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Questions connected with material brittle failure in zones of stress concentration have 
frequently attracted the attention of researchers. In fact, use in this case of classical 
strength criteria as a rule gives low values of calculated limiting loads compared with 
experimental data for specimens with concentrators, particularly if specimens are prepared 
from brittle structurally inhomogeneous materials of the cast iron type [I, 2], graphite 
[3, 4], and glass-reinforced plastics [5, 6]. 

In [i, 5-13] experimental verification and theoretical development of a gradient 
approach was formulated for the question of material strength with a nonuniform stressed 
state in the vicinity of concentrators. At the same time in order to evaluate the strength 
of structural elements with cracks other methods have been developed which then comprised 
the basis of modern fracture mechanics. Since in one case or another there is a nonuniform 
stressed state close to the tip of a concentrator or a crack, then a certain form of the 
interconnection of the gradient approach with classical fracture mechanics is found in [13]. 

In the present work specific forms are considered for gradient criteria of strength 
which satisfy the condition of a connection with classical fracture mechanics and a combined 
version of them is also formulated. On the example of different stress concentration prob- 
lems it is shown that use of gradient criteria of strength in the particular case of stress 
concentrators in the form of a crack leads to linear fracture mechanics relationships~ 

It is well known that for linear fracture mechanics equations there are certain 
application limits in the range of short crack lengths. Similar limitations are also found 
for gradient criteria in the case of small stress concentrators of the hole and pore type. The 
limitations obtained are then used by the Griffiths procedure in order to estimate critical 
defect dimensions in the form not only of microcracks, but also through holes and pores. 
These estimates are of undoubted interest since the strength of some brittle materials, 
including ceramic materials, is determined by presence of defects of the pore type, 

i. Gradient Appr0ac ~ for Estimating Material Strength in the Zone of Stress Concentra- 
tion. The maximum value of the first principal stress in a body maxlo I at the instant of 
the start of failure is called the local strength limit o, which is'non a constant value 
and it depends on the degree of stressed state nonuniformity in the vicinity of a very 
critical point of a body. This nonuniformity may be specified by the relative gradient of 
the first principal stress 

gl = [gradolJ/maxoh (i.i) 

which is calculated at a very critical point of a structural element from the elastic solu- 
tion of the corresponding problem. 

It is shown by experiment in [I, 5, 6] that the effect of a local increase in strength 
in the stress concentration zone may be described by a functional dependence o, = off(gl). 

Here of is normal ultimate strength determined from smooth specimens whose cross-sectional 
area equals that of the specimen net cross section with a concentrator. The form of func- 
tion f(gl) is found by proceeding from specific experimental data. It is noted in [6] that 
the relationship o, = of(l + Bg~) satisfactorily describes experimental results obtained for 

glass-reinforced plastics AG-4s and 33-18s. 
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Fig. 1 

In [12] attention is drawn to the fact that only with n = 1/2 for structural elements 
with concentrators in the form of cracks will finite values of limiting nominal stresses be 
obtained. In the opposite case a body with a crack is either impossible to break or it 
fails with zero loads. This means that the gradient strength criterion satisfying the 
requirement of infiniteness for the failure zone in for a concentrator of the crack type 
may be described as follows: 

a,  = a f ( t  + VL-~ )  ( 1 . 2 )  

(L1 i s  a pa r a me t e r  having a d imension o f  l e n g t h  and depending on m a t e r i a l  p r o p e r t i e s ,  i . e . ,  
c h a r a c t e r i s t i c  s i z e ) .  

In  [13] u s ing  t h e  wel l -known s o l u t i o n  o f  t he  problem f o r  e x t e n s i o n  o f  a p l a t e  wi th  an 
e l l i p t i c a l  h o l e  ( F i g .  1) i t  i s  shown t h a t  pa r ame te r  Li shou ld  be connec ted  wi th  m a t e r i a l  
c rack  r e s i s t a n c e  c h a r a c t e r i s t i c s ,  i . e . ,  c r i t i c a l  s t r e s s  i n t e n s i t y  f a c t o r  Klc,  by t he  
r e l a t i o n s h i p  

L 1 = (2/n) K~r (1 .3 )  

In  t h i s  case  f o r  a c o n c e n t r a t o r  in  t he  form of  a c rack  G r i f f i t h s  c r i t e r i o n  ( 1 . 2 )  g ive s  an 
e q u a t i o n  known in f r a c t u r e  mechanics  f o r  d e t e r m i n i n g  t he  l i m i t i n g  nominal  s t r e s s e s :  

P,  = K1 r ] / c ~  (1.4) 

(d is overall crack length). 

However, the form of (1.2) considered previously for the gradient criterion satisfying 
the requirement of infiniteness of the failure load for a concentrator of the crack type is 
not the only one possible. For example, considering gradient models in the region of fatigue 
failure for structural elements [8, 9] the gradient strength criterion may also be written 
in the form 

o, -~ af ]/'t -~ Llg,. (1.5) 

Since for concentrators of the crack type gl + ~, then criterion (1.5) also gives accurately 
the same results as (1.2). However, for concentrators which differ from cracks criteria 
(1.2) and (1.5) will give different results. Thus, with the same material characteristics 
of and LI there are two different gradient strength criteria. There is no visible advantage 
of one criterion over the other. Experimental results for the failure of specimens with 
concentrators as a rule are found in the region between curves plotted by criteria (1.2) and 
(1.5). Therefore, a combined version of the gradient strength criterion is suggested: 

( 1 . 6 )  

Hero ~ is a variable parameter (~ ~ 0). If ~ = O, then the combined criterion (1.6) is 
converted into (1.2), and if 8 = 1 then it is converted into (1.5). 

For experimental results obtained for a specific material with a nonuniform stressed 
state it is possible to find a value of $ with which the combined criterion (1.6) will 
describe these results better than (1.2) and (1.5). It is noted that according to [14] in 
order to describe the strength properties of a material around a hole it is sufficient to 
introduce two additional parameters one of which should have a dimension of length, and the 
second may be dimensionless. From criterion (1.6) the role of the first parameter is 
fulfilled by L1, and the second by 6- Parameter LI is determined by Eq. (1.3) from the 
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condition for a link-up of the combined gradient strength criterion with linear fracture 
mechanics, and in essence B is introduced as an approximation parameter whose physical sense 
is not yet clear. 

It is also noted that for concentrators in the form of cracks the combined criterion 
(1.6) will give the same equations as (1.2) and (1.5). Here the question arises: will they 
coincide with linear fracture mechanics equations not only in the case of a concentrator of 
the Griffiths crack type, but also in the general case? 

2. Confirmation of the Connection of Gradient Strength Criteria with Linear Fracture 
Mechanics. In order to confirm the interconnection of gradient criteria with linear 
fracture mechanics and the validity in the general case of Eq. (1.3) connecting parameter L I 
with crack resistance K1c it is possible to use known elastic solutions of the problem of 
stress concentration which permit at the limit conversion to stress concentrators in the 
form of cracks. 

Examples of Plane Problems. First we consider the problem of biaxial tension of a plate 
with an elliptical hole (Fig. 2) whose solution is well known. In [15] there are equations 
which give the distribution of the first principal stress oi over the critical cross section, 
i.e., over axis x: 

x(z ~ _ a 2 +2b 2) 

The maximum of o I is reached with x = a. Consequently, stress concentration factor a, 
which is the ratio of maximum stress to niminal stress, is determined by the equation a = 
2a/b. It is noted that ~ > 2 since always a > b. In view of symmetry of the problem 

Igrad oi I = [dol/dx I. ConTidering that a = d72 and ~2 we obtain I gradolI = ~p(~2 - 2)/d. 

Since maxo z = ~p, then from (i.i) we find gl = (~2 _ 2)/d. By substituting this expression 
in the combined criterion we obtain 

o ,  = o f (  1 - -  ~ + V ~2 + (~2 _ 2) L,/d). 
T h e  n o m i n a l  f a i l u r e  s t r e s s  p ,  = o,/~, i . e . ,  

( l - - ~  , 1 1/f~2 ~. _ L~/d ~.] p ,  = zf  \ - - ~  ~ ~ (a~ 2) 
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At the limit with ~ + ~ for a concentrator of the crack type and with finite values of 
parameter ~ we have 

Substitution of (1.3) in (2.1) gives 

P . = ~ f : V - L I / d .  (2 .1 )  

P,  = Kxc ]/-(2]a)/d. ( 2 . 2 )  

An equation known in fracture mechanics was obtained in [15] for determining the nominal 
failure stress with biaxial tension of a plate with a rectilinear cut. 

Thus, the correctness of Eq. (1.3) connecting L I with crack resistance K1c was con- 
firmed. In addition, with the problem in question of biaxial tension of a plate with an 
elliptical hole in essence was carried out by testing the results [13] since Eqs. (1.4) 
and (2.2) should colncide, and they did. 

Now we consider the problem of the effect of concentrated forces on the contour of an 
ellipticalihole in an infinite plate (Fig. 3). There is a solution for this problem in [16] 
where it is given in a special! complex region and in a complex function of stresses. By 
using the Kolosov equation it is possible to find an expression for the stressed state compo- 
nent. Then it is necessary to change over to real coordinates of the problem and to describe 
the distribution of the first principal stress 01 = el(x) for the critical cross section. 
The maximum stress is achieved at the contour of an elliptical hole with x = a, it does not 
depend on the dimension of the major axis of the ellipse and it is determined by the expres- 
sion 

2P maxo'l = .~--~-- (2 .3 )  

In view of symmetry of the problem [grad o11 = Idol/dx I . After differentiating func- 
tion o1(x ) with respect to coordinate x we determine Igrad ol[ with x = a. By substituting 
[grad oii and max01 I. ~In expression (I.i) we obtain the equation sought for the relative 
gradient g~ at the tip of a stress concentrator: 

gl = 2a/b 2. (2 .4)  

Substitution of (2.4) in (1.6) gives 

--  2L,a/b- ). ( 2 . 5 )  
~ ,  = . f (  t ~ + V'~ + . . . . . . .  ' 

At the instant of the'\start of failure max o I reaches a value of the local strength limit o,. 
From this condition by\ equating expressions (2.3) and (2.5) in order to determine concentrated 
forces at the instant of the start of failure we find an equation 

bsf( l  - - ~ +  V'~ ~ + 2L,a/b"). P* = 2" 

In the case of a concentrator of the crack type b + 0, i.e., with finite values of 8 we 
have 

Substitution of (1.3) in (2.6) gives 

p ,  ~- (j~Lta" ( 2 . 6 )  

The equation obtained is known in fracture mechanics [15] for determining the value of con- 
centrated forces which operate at the center in the edge of a crack at the instant of the 
start of its propagation. This means that once more the interconnection of gradient strength 
criteria with linear fracture mechanics was confirmed. 

/ 
Examp!@ 0f a Spatial Problem. Now, in order to confirm the correctness of Eq. (1.3) we 

consider a spatial problem of the distribution of stresses around an axisymmetrical, flattened 
over the axis of symmetry, spheroidal cavity in an unbounded body with axial tension of this 
body along the axis of symmetry (Fig[ 4). A solution of the problem is known [17] and it is 
given on elliptical coordinates. According to this solution the distribution of the first 
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principal stress o I over the critical cross section is found from the expression 

A -~ 4B - -  v) C)(arctg r I 

Here 

A = V W ~ [ ( 6  - -  8 v ) F  - -  6 F W  2 + 4 W  ~ - -  8 ( i  - -  -r W2]/?i: 

B =  VW 4[2vF + 2W 4 - ( l + 2 v ) W  2]IN: C =  VW r  12W 2] /N;  

N = 6 [ S F W  2 - -  2 ( t  + v ) F  ~ - -  6FW 4 + 4 ~  -- z~W 4] ; 

(+) y' d 
D is cavity diameter in the critical section; H is cavity size over the axis of symmetry 
(height); r is current radius over the size of s~etry; and v is Poisson's ratio. 

Maximum stresses in the critical cross section are reached at the surface of a spheroidal 
cavity where r = D/2. It is possible to prove that at these points sh(u) = V. This means 

that 

a = t + - - -  

For determining (i.i) we find 
I 24B + 4 (i - -  v) C - -  6 (A + 4B) WZ/V ~ I i ( 2 . 8 )  

D" 
A ~ 4 B - -  (12B ~ 2 ( i - -  v) C) \V ~ - -  arctg V 3 

We consider the limiting change-over from a spheroidal cavity to a flat circular crack 
with H/D + 0, and in this case V + 0, W + I. We write the combination of coefficients A, B, 
and C encountered in (2.7) and (2.8) only considering values of a higher order: 

A @ 4 B = ! V  ~. t 2 B + 2 ( 1 _ ~ ) C = = _ _ _  2 " ( 2 . 9 )  

Substitution of (2.9) in (2.7) for a with V + 0 gives the expression 

a =(4/.~)/V. ( 2 . 1 0 )  

Similarly by substituting (2.9) in (2.8) and considering in the denominator only terms of the 
order of smallness V 2 we obtain an expression for the relative gradient gl in the case of a 
concentrator of the flat circular crack type, i.e., with H/D § O, V § O, W + i: 

(2.11) 

Now we determine the nominal failure stress p, = o,/a. Taking account of (2.10) we write 
p, = (~/4)Vo,. Use of the combined criterion and expression (2.11) gives 

P* = T 

Since V + 0, then 
p ,  = (~f V ( Z / 4 )  LJD. 

Considering (1.3) we have 

p ,  = KI~ F ( ~ D .  ( 2 . 1 2 )  

The equation obtained was known in fracture mechanics for determining nominal failure stresses 
with the presence of a flat circular crack of diameter D. 

Thus, use of gradient strength criteria in a particular case of stress concentrators in 
the form of cracks leads to relationships of linear fracture mechanics~ However, for un- 
symmetrical problems the question of the conformity of results obtained by equations of 
classical fracture mechanics and by the gradient criteria requires further study. 

3. The Case of Small Sized Stress Concentrators. It is well known that for linear frac- 
ture mechanics equations there are certain limits of applicability in the region of short 
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length cracks. Similar limitations also correspond for gradient criteria with small sized 
stress concentrators in the form of holes and pores. In fact, in using gradient criteria in 
this case the nominal failure stress p, will be greater than of, which contradicts physical 
sense. For example, for the problem of uniaxial tension of a plate with an elliptical hole 
shown in Fig. 5 is the dependence of p, on concentrator size over the critical cross section 
d for a Griffiths crack (curve 3) and for a circular hole (curves 1 and 2 plotted by means of 
criteria (1.2) and (1.5) respectively). 

We consider more carefully the condition 

P*~Of (3.1) 

with the aim of finding the limits of consistency for the combined gradient criterion, for 
example, for concentrators:in the form of through elliptical holes (see Fig. i). Here the 
relative gradient is found from an equation [13] 

gl = ( ~ - - t ) 2 ( t  + t/2~)/d, 
where a = 1 + 2a/b. After substituting this equation in criterion (1.6) for determining 
p, = a,/a we have 

By using condition (3.1) and an expression for p, we obtain the limitation sought d _> d,, 
where 

d ,  -- 1 + L 1. ~+2~--~ ~ (3.2) 

Thus, gradient criterion (1.6) with a specified value of $ may only be used when the size of 
the hole over the critical cross section is not less than a certain value of d, for a given 
hole shape. Otherwise we obtain high values of calculated limiting loads which contradict 
common sense. 

The limitation found is similar to those which arise in linear fracture mechanics with 
small crack sizes and similarly it may be used in order to evaluate the critical size of 
defects in a material in the form not only of microcracks, but also through holes. In fact, 
the presence in a material of defects of certain (critical) sizes explains in Griffiths 
theory the real strength of of brittle materials. It is noted that with ~ § ~, according 
to (3.2), we have d, = Ll, i.e., parameter L I appeared to equal the critical size of a 
defect of the Griffiths crack type. 

As is well known, the strength of some brittle materials, including ceramic materials, 
is determined by the presence of defects in the form of pores. In [18-21] it is shown by 
experiment that the larger the size of defects of this type, the less is material strength. 
It is necessary to estimate the limiting permissible defect size in the form of pores. Let 
there be spherical pores. In this case it is possible to use the Leon solution for stress 
distribution around a spherical cavity in an unbounded body with uniaxial tension for this 
body. According to the Leon solution [16] there is the following distribution of first 
principal stress through the critical cross section: 
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4 - -  5v a a 9 a 5 \ 
( ~ , = p  1 +  i4  ,~ov r 3 -} i 4 - - 1 0 v  ~ ) "  

Here p is nominal stress; v is Poisson's ratio. The maximum stresses are achieved at the 
surface of a spherical cavity where r = a. This means that 

2 7 - -  t5v ( 3 . 3 )  
or = ' 1 4 -  1o--------7" 

I 57--15v p In accordance with (i.i) we In view of symmetry of the problem I grad~1]-- -TF .---- 14--10v a 
find that 

57--15v i 
g l =  27--15v a" 

(3.4) 

Use of combined gradient criterion (1.6) considering (3.4) and (3.3) in order to determine 
the nominal failure stress gives an equation 

f4 -- 10v ;, ~=~f i--~+~+I~-~~ ' 
= 2~---- 15v ' ' 

where D = 2a is spherical cavity diameter. By using this equation and the condition p, 
of we find the critical diameter of a defect in the form of a spherical pore: 

D ,  - -  t i 4  - -  30v L~ 
2 7 - - 1 5 v  ( ~ z - - t ) ( a + 2 ~ - - i ) "  

(3.5) 

Here concentration factor ~ is determined by Eq. (3.3). 

For example, with v = 0.22 for ceramic WC-10% Co [22] assuming that ~ = I/2 from Eqo 

(3.5) we have D, = 2.237 L I. Use of this estimate applied to experimental data [20] obtained 
in WC-IO% Co material leads to good agreement of theoretical D~ and experimental D e values 

(Fig. 6). Brittle failure of specimens is initiated by defects in the form of artificial or 
natural pores (points 1 and 2) whose diameter after breakage is found by means of a scanning 
electron microscope. 

In [20, 21] it is assumed that action of a spherical pore of certain diameter on the 
strength of an equivalently affected flat circular crack of exactly the same diameter, i.e., in 
accordance with (2.12) and (1.3) 

~2 
D ,  = - T  L ,  ~ 2 ,47  L r 

In addition, in order to estimate the critical sizes of defects in the form of pores there 
is use in [18, 19] of a the model of a pore surrounded by an annular crack. According to 
estimates in [19] for satisfactory description of experimental data for brittle failure of 
silicon nitride the length of annular cracks should be an order of magnitude greater than 
the grain size, i.e., these cracks should have a length sufficient for their detection. 
However, experimental studies carried out in [20] by means of a scanning electron microscope 
did not confirm this hypothesis about the presence of annular cracks around pores. In this 
connection it should be noted that use of the combined gradient strength criterion (1.6) 
makes it possible to obtain suitable estimates of critical defect sizes in the form of pores 
without drawing on additional hypotheses about the presence of annular cracks around pores. 

Attention is drawn once again to the fact that for concentrators of the crack type 
this criterion gives linear fracture mechanics equations confirmed in practice. Thus, 
analysis of the suggested combined gradient strength criterion (1.6) demonstrated its broad 
universal possibilities and promising nature for use in strength analysis. 

io 
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